
Michelle Strout
1/20/05

OpenAnalysis: Status as Used in
OpenADFortTk and ADIC

2

OpenAnalysis Overview

Analysis
 IR Interface

IR-Specific Interface
Implementation

Analysis

Results
Interface

Results

IR-Specific
Analysis Results

ClientUses
Generates

Implements

Clients

Toolkit

Intermediate
Representation

3

Control-flow Graph Example

CFG IR Interface

Whirl IR
Interface

CFG Analysis
Manager

CFG Interface

CFGStandard

OpenADFortTk
Uses

Generates
Implements

ADIC

Binary Object Code
IR Interface

Sage IR
Interface

4

Interacting Analyses and
Analysis Frameworks

ReachDefs IR Interface

Whirl IR Interface

ReachDefs

Analysis Manager

ReachDefs Interface ReachDefs Standard

Uses
Generates

Implements
Client

UDDUChains IR Interface

CFG Data-flow

Analysis Framework

UDDUChains

Analysis Manager

UDDUChains InterfaceUDDUChains Standard

5

Opaque Handles to Source IR

• ProcHandle, StmtHandle, MemRefHandle,
ExprHandle, etc.

• Provided by the source IR

• Analysis managers in OA provide analysis results
associated with handles

6

General Approach for Developing
an Analysis-Specific IR Interface
• Represent relevant program constructs with an

opaque handle

• Make queries on handles for more information

• Example: Control-flow graph analysis

CFG::IRStmtType
 getCFGStmtType(StmtHandle)

SIMPLE, COMPOUND, LOOP,
STRUCT_TWOWAYCONDITIONAL, ...

7

Alias and Pointer Analysis

• Determines which memory references may or must
reference the same program state (or memory
locations)

• Important for many other analysis algorithms

8

Aliasing due to Arrays

• A(0) does not alias A(i) but
won’t detect until doing
array section analysis

• A(i) does alias A(4)

• A(0) does not alias A(4)

REAL, dimension(10) :: A

A(0) = ...
do i = 1, 10
 A(i) = ...
end do
... = A(4)

9

Aliasing due to Reference
Parameters

• x and y are aliased in
call to foo that
happens in bar

• A reference parameter
can also alias a global

• For now we plan to
merge aliasing of all
calls to same
procedure

procedure foo(x,y)
integer,
intent(inout) :: x,y
...
end function

program bar
integer a

call foo(a,a)

10

Aliasing due to Pointers

• At G=P statement P may
alias T1 or T2

• Current alias algorithm
assumes pointers point to
Unknown location

• Required interface to
implement pointer
analysis does exist

REAL, POINTER :: P
REAL, TARGET :: T1,T2
REAL :: G

if (flag)
 P => T1
else
 P => T2
end
G = P

11

Approach to Determining Aliasing
in OpenAnalysis

• query source IR for memory reference expressions
that describe a memory reference
• map memory reference expressions to locations

A[7]

MemRefExpr Location
LocBasicSubSet

partial

Location

SymHandle for A

mLoc

LocIdxSubSet

mIdx = 7

Location

SymHandle for A

mLoc

NamedRef

SymHandle for A,

partial accuracy

NamedRef

SymHandle for A

IdxAccess

mIdx = 7

mMRE

12

Example Alias Analysis Results

• Analyze the set of may and must locations for each
memory reference
REAL, POINTER :: P
REAL, TARGET :: T1, T2
if (flag)
 P => T1
else
 P => T2
end
G = P

Location

SymHandle for T1

Location

SymHandle for T2

or

13

Data-flow Analysis

• Operates on Locations

• Reaching Constants: if possible associates a
constant value with locations

• Side-effect Analysis: keeps track of locations that
may or must be modifiedor used

14

Status of IR Interfaces

• Whirl IR Interface (Open64IRInterface)
- Have interfaces for CFG, CallGraph, Alias, Reaching

Definitions, UDDUChains, Side-effect, and Activity
- Still Needed
• Persistent IR Handle values
• Appropriate memory reference expressions for pointers

• Sage IR Interface (SageIRInterface)
- Beata is working on generating memory reference

expressions, which are a basic requirement for most
analyses

15

Status of Analyses

• Analyses that have been converted to NewOA
- CFG
- CallGraph
• Analyses in implementation and testing stages
- Alias analysis
- UDDUChains
- Interprocedural side-effect analysis
- Activity analysis
- Reaching constants
- Activity analysis over MPI-CFG

16

Alias Analysis

• Aliasing due to aggregate types and arrays

• Status: implemented but seems to be broken for array
references at the moment
• To handle constant array refs need more precise mem ref

expressions and code to convert those to locations

Memory
Reference

Alias Map
Set Locations

A(i) 1 {<0..1, partial>}

x 2 {<2..2, full>}

A(3) 3 {<1..1, full>}

A(i) = ...
x = ...
... = A(3)

17

Alias Analysis cont...

• Aliasing due to reference parameters
- currently assume make optimistic assumption that

aliases due to reference parameters don’t happen
- requires interprocedural alias analysis
- working on the interprocedural piece right now

• Aliasing due to pointers
- any dereference in a memory reference expression

results in a mapping to the Unknown location
- requires an alias algorithm that maintains a

points-to datastructure

18

Use-def and Def-use Chains
UDDUChains aka. DU_UD

• For each use memory reference lists the statements
that might define it. For each def memory reference
lists the statements that might use it.

• Used to create computational graphs within basic
blocks

• Jean, Nathan, and I have been actively debugging
this for the past few weeks

19

Interprocedural Side-effect Analysis

• Determines the set of locations used (USE),
definitely defined (DEF), possibly modified (MOD),
and possibly referenced (REF) for the procedure

• Not affected by optimistic assumption about
reference parameters not aliasing

• When translate to XAIF need to convert location
abstraction to variable references, more work on
this specification is need to enable implementation
in whirl2xaif

20

Activity Analysis

• Interface for usage: provide an iterator for
independent and dependent locations

• Analysis indicates active locations, active
statements (those that may define an active
location), and active memory references

• We need to discuss how independent and dependent
locations will be specified in OpenADFortTk and
how to represent results in XAIF

• Needs more testing

21

Better Testing Strategy

• IR Interface implementations
- careful hand analysis to verify small examples of

most cases and then regression testing
- need persistent handles to compare results for

regression testing
• Analyses
- again careful hand analysis and then regression

testing with examples from each source IR
- have analysis-specific IR interface parsers for

some but generating examples is time consuming

